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This article consists of two parts: a brief overview of the ways in which free radicals can be
involved in chemical carcinogenesis, and a review of cigarette smoke chemistry. Carcinogenesis
is generally agreed to involve at least three stages: initiation, promotion, and progression. It is
suggested that radicals sometimes are involved in the initiation step, either in the oxidative
activation of a procarcinogen (such as benzo[alpyrene) to its carcinogenic form or in the binding of
the carcinogenic species to DNA, or both. The fraction of initiation events that involve radicals, as
opposed to two-electron steps, is not known, but radicals probably are involved in a substantial
number, although probably not a majority, of cancer initation reactions. Promotion always involves
radicals, at least to some extent. Progression probably does not normally involve radicals. The
second part of this article reviews the molecular mechanisms involved in cigarette-induced
tumors, particularly by aqueous cigarette tar (ACT) extracts and by a model of these solutions,
aged solutions of catechol. ACT solutions as well as aged solutions of catechol contain a
quinone-hydroquinone-semiquinone system that can reduce oxygen to produce superoxide and
hence hydrogen peroxide and the hydroxyl radical. Both the cigarette tar radical and the catechol-
derived radical can penetrate viable cells, bind to DNA, and cause nicks. Environ Health
Perspect 1 05(Suppl 4):875-882 (1997)
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Introduction
This review is divided into two parts. In
the first, I suggest an overview and organi-
zational scheme for the various ways in
which free radicals may be involved in
chemical carcinogenesis. In the second, I
review some of the recent research on ciga-
rette chemistry and biology done both in
our laboratory and in others.

Mechanisms By Which
Radicals Can Be Involved
in Carcinogenicity
The involvement of radicals in chemical
carcinogenesis seemed evident for many
years, based on a number of generalities.
First, since the activation of many procar-
cinogens involves an oxidation step, and
since many oxidations involve radicals, it

seemed likely that radicals would be
involved in carcinogenesis, at least some for
some carcinogens (1,2). Second, a number
of radical scavengers and/or antioxidants
protect cells or animals from tumor forma-
tion, although individual antioxidants seem
to protect against different carcinogens
without a general pattern being dear (2-6).
Third, a proinflammatory state, which can
predispose tissue to tumor development,
involves higher concentrations of endoge-
nous radicals such as superoxide (7-10).
Fourth, antioxidant defenses appear to be
altered in procarcinogenic states (11-14).
Fifth, it is clear that radical activity in the
protumor state is increased regardless of
whether the activity is measured by
increased amounts of lipid (15,16) or
DNA oxidation products (17-19).

This paper is based on a presentation at the symposium on Mechanisms and Prevention of Environmentally
Caused Cancers held 21-25 October 1995 in Santa Fe, New Mexico. Manuscript received at EHP 16 April
1996; accepted 26 August 1996.

Address correspondence to Dr. W.A. Pryor, Biodynamics Institute, 711 Choppin Hall, Louisiana State
University, Baton Rouge, LA 70803. Telephone: (504) 388-2063. Fax: (504) 388-4936. E-mail:
wpryor@unixl .sncc

Abbreviations used: ACT, aqueous cigarette tar extracts; B[alP, benzolalpyrene; DMPO, 5,5-dimethyl-1-
pyrroline-N-oxide; ESR, electron spin resonance (also called electron paramagnetic resonance); PAH, polycyclic
aromatic hydrocarbon; PAM, pulmonary alveolar macrophage; SOD, superoxide dismutase.

In recent years, the literature on the
involvement of radicals in carcinogenesis
has grown enormously. That can be seen
quite strikingly in the comparison of the
1986 review by Kensler (7) and that by
Frenkel (8) in 1992, which is about twice
the length and includes more than three
times the number of references.

Carcinogenesis and Radicals
Cancer is a multistep process, which gener-
ally is identified as three stages: initiation,
promotion, and progression. The activa-
tion of many types of initiators can involve
radicals. For example, the oxidation of
polycyclic aromatic hydrocarbons (PAHs)
to an electrophilic derivative that can
attack and bind to DNA may involve radi-
cals. Promotion almost certainly involves
the production of higher levels of endoge-
nous radicals such as superoxide. Once a
tumor is established, progression may be
controlled by genetic factors that probably
only minimally involve the pathological
reactions of radicals.

The various mechanisms for radical
involvement are summarized in Table 1.
In mechanism 1, radicals are involved in
neither initiation nor promotion. Cases of
this type certainly occur; the activation of
a PAH such as benzo[a]pyrene (B[a]P) via
a nonradical, P450-dependent process is
an example, as is the chemistry involved in
the binding of aflatoxin to DNA, although
even this process can involve radicals (20).
It is not known what fraction of all cancers
is due to these and other nonradical
tumorigenesis processes, but it generally is
believed that a considerable fraction of
cancers probably fits this category.

Table 1. Mechanisms in which radicals are involved
in either the initiation or promotion stages of
carcinogenesis.a

Mechanism
no. Initiationb Promotionc Example
1 No No P450/B[a]P
2 Yes No PGS/B[a]P
3 No Yes ?
4 Yes Yes iso-P450/

B[a]P phenols
5 Radicals can be involved in mechanisms

that do not involve binding of the
carcinogen, e.g., superoxide-dependent
DNA nicks.

PGS, prostaglandin synthase. "Adapted from Pryor (2).
bRadicals are involved in carcinogen activation.
cRadicals involved in DNA binding of carcinogen.
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Mechanism 2, in which initiation
involves radicals but promotion does not,
may be quite rare, since radical involvement
in promotion is unquestionably important
and common. Examples of radical-medi-
ated activation of a procarcinogen include
the prostaglandin synthase-dependent co-
oxidation of a PAH (21-26), one-electron
oxidation of PAHs to their cation-radicals
that bind to DNA (27-33), and reactions
involving radical attack on carcinogens
(34). Other examples can involve the reac-
tion of products produced by radical-
mediated processes (such as malonaldehyde
or 4-hydroxynonenal from lipid peroxida-
tion), either with procarcinogens to activate
them or directly with DNA (35-39).

The general perception is that carcino-
gens bind to DNA by even-electron (non-
radical) pathway, and, to a certain extent,
publications that argue the importance of a
one-electron pathway for DNA binding are
swimming upstream with the current
against them. However, it is hard to deter-
mine whether this is because nature pre-
dominantly uses even-electron pathways
for attacks on DNA, or because it is more
or less a historical artifact, since the B[a]P-
diol-epoxide pathway was elucidated very
early, in studies by NIH authors (40-43),
so that the known even-electron pathway
dominated the thinking of many workers. I
have always believed that the latter is true,
at least in part.

Mechanism 3, in which radicals are
involved in promotion but not initiation,
may be common; but, as is true for mecha-
nism 1, it is impossible to know what frac-
tion of tumors results from this pathway.
However, it is commonly accepted that the
activation of procarcinogens to their car-
cinogenic state does not always involve rad-
icals, whereas promotion most often
involves a long-term, proinflammatory
state with high radical fluxes in the affected
tissues. Thus, it is likely that all initiation
events-no matter whether radicals were
involved or not-are followed by a radical-
involving promotional state if a tumor is
to result.

In mechanism 4, radicals are involved
in both initiation and promotion, and
probably are almost co-terminus with the
mechanism in which radicals are involved
in initiation alone.

In addition to these mechanisms, there
is mechanism 5, in which radical-mediated
damage is done to DNA without the for-
mation of adducts (44-46). This mecha-
nism may apply, for example, in
high-energy radiation-initiated tumors.

Other Mechanisms
In addition to these somewhat obvious
mechanisms by which radicals could be
involved in carcinogenesis, there is a classi-
fication of "other mechanisms" that are
more roundabout. Because this is a vague,
catch-all category, many mechanistic types
can fit it, and the examples given here do
not include all the possibilities.

An example of the indirect effects
radical reactions can have on cancer is the
incompletely understood effects of oxida-
tive stress on oncogenes. For example, an
epidermal cell transfectant that overex-
presses Cu/Zn superoxide dismutase
(SOD) is more sensitive to oxidative stress,
as monitored by increased c-fos message
(11). Tumor cells may often be low in
SOD activity (12).

Another example of these complex
mechanisms involves the effects of 0-caro-
tene on gap junction regulation. ,-Carotene
strongly upregulates gap-junction commu-
nication (47), thus producing an antitu-
morigenic effect. Because ,B-carotene is
often called an antioxidant, this effect
might be ascribed to radical scavenging of
tumor-promoting radicals (47).

Cancer and the Diet
The involvement of radical reactions in
chemical carcinogenesis has recently been
in the news, as it has become increasingly
clear that the dietary intake of antioxidant
nutrients such as vitamin E, vitamin C,
and ,B-carotene can profoundly affect
tumor susceptibilities of populations
(4,48-52). These concerns also have
emphasized the need for a biomarker for
the oxidative stress that can lead to cancer.

Were such a marker identified, it could be
used as an end point in dietary trials,
making them shorter and less expensive to
perform (53-57).

The ways in which antioxidants might
interfere with tumorigenesis are outlined
in Figure 1. As can be seen, there are
many possibilities.

Cigarette Smoke Chemistry
Cigarette smoke is operationally divided
into gas-phase smoke and particulate matter
(or tar). Tar is the material retained on a fil-
ter, whereas gas-phase smoke passes through
the filter. (Typically, a Cambridge filter
[University of Kentucky, Lexington, KY],
which retains 99.9% of the particles . 0.1
pm, is used.) Both the tar and gas-phase
smoke are very rich sources of radicals.
A smoker inhales gas-phase smoke

(so called mainstream smoke) as well as
particulates that penetrate whatever filter is
being used. Both of these phases are highly
oxidizing, putting an oxidative stress on
the entire organism as well as on the lungs
(58-60). For example, smokers have lower
concentrations of vitamin C in their blood
plasma and vitamin E in their lung lavage
than do nonsmokers (13,14,61,62). Some
biomarkers of smoking are reduced by
antioxidant vitamins (63). Some antioxi-
dant enzymes (e.g., SOD) increase whereas
others decrease in activity in the red blood
cells of guinea pigs exposed to cigarette
smoke (64). Cigarette smoke initiates lipid
peroxidation in rat tracheal explants (65)
as well as in other systems (66-72). Breath
ethane, a measure of the oxidation of n-3
polyunsaturated fatty acids, is elevated in
smokers (62,73).

Antioxidants (E, C, GSH, etc.),
antioxidant enzymes

Figure 1. A schematic presentation of ways in which radicals may be involved, and antioxidants may block,
tumorigenesis. Abbreviations: E, vitamin E; C, vitamin C; GSH, glutathione.
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Gas-phase Smoke Radicals
Gas-phase smoke contains more than 1014
low-molecular-weight carbon- and oxygen-
centered radicals per puff (74). In addi-
tion, smoke contains up to 500 ppm nitric
oxide (NO), which slowly undergoes oxi-
dation to nitrogen dioxide ('NO2) (75),
and both these gases are, of course, radi-
cals. The radicals in gas-phase smoke are
too short lived to be detectable by direct
electron spin resonance (ESR), but they
can be studied by the indirect spin trap
method (74,76,77).

The small organic radicals in gas-phase
smoke are not produced in the flame:
flame radicals are too short lived to pass
through the cigarette. Rather, these organic
radicals are produced in a steady state by
the addition of nitrogen dioxide to iso-
prene and other similar compounds in the
smoke to make carbon-centered radicals
that react with oxygen to make oxyradicals
(74,76,77). Because gas-phase smoke con-
tains carbon- and oxygen-centered radicals
and such high concentrations of nitric
oxide (75), alkyl peroxynitrite and peroxy-
nitrate esters also can be produced (78-82).
Figure 2 shows a schematic outline of the
isolation of gas-phase smoke and tar and
the radicals that each phase produces.

Tar Radicals
In sharp contrast with the gas-phase
radicals, the radical in tar is a long-lived
semiquinone that can be studied directly by
ESR on the filter or in organic solvents or
aqueous extracts (83-85). Aqueous extracts
of cigarette tar (ACT) contain a low-molec-
ular-weight quinone-hydroquinone-semi-
quinone system (Q-QH2-QHI). The
cigarette tar semiquinone radical, as is typi-
cal of such radicals, can reduce oxygen to
produce superoxide, and hence hydrogen
peroxide and the hydroxyl radical. Unlike
the tar radical itself, the superoxide and
hydroxyl radicals are too reactive and short
lived to be observable by direct ESR; but
they can be detected by the use of spin trap
5, 5 -dimethyl- 1 -pyrroline-N-oxide
(DMPO) (78,86,87).

Figure 3 shows the ESR spectra
obtained when tar on a Cambridge filter is
placed in the ESR spectrometer; the
gvalue of 2.0039 is that of a semiquinone
radical. We have developed a model for
the cigarette tar radical consisting of
aged (autoxidized) solutions of catechol.
Figure 3 also shows the ESR spectrum
produced when an aged solution of cate-
chol is filtered; again the signal is due to a
semiquinone (78).

Cambridge filter-a glass fiber filter that
retains 99% of particles larger than 0.1 gm

a - ~Gas-phase C 0
cigarette smokeL

V lb
Cigarette

f Extract

ACT P[

NO, NO2, R, ROO*,
ROONO, ROONO2

dEF

d0 0

02i/H20J/HO l

Figure 2. A scheme showing the isolation of gas-phase cigarette smoke and tar and the radicals each fraction pro-
duces (78). Using a Cambridge filter, whole smoke is separated into gas-phase smoke and tar (steps a, b). Gas-
phase smoke, as shown in step c, contains a steady state level of nitrogen-, carbon-, and oxygen-centered radicals
and produces esters and peroxyesters of nitrous and nitric acids (74,76,77). The gas phase also causes PAM to
produce more active oxygen species (step d). The tar semiquinone radical (258,78,91,93,109,110) reduces oxygen
and produces superoxide (step e) and this radical-producing component can be extracted into ACT extract solutions
(step f). The tar radical, like other superoxide-producing systems, nicks DNA.

g= 2.0039

A

9 = 2.0039 \ B

3480 3500 3520

Field, gauss

Figure 3. The electron spin resonance (ESR) spectra
obtained when (A) a Cambridge filter is placed in the
cavity of an ESR spectrometer after the smoke from a
single cigarette has been pulled through the filter, and
(B) an aged solution of catechol is filtered. Both spectra
can be identified as being due to a semiquinone (78,92).

The tar radical, a relatively stable semi-
quinone, is not reactive. However, ACT
solutions produce superoxide, hydrogen per-
oxide, and the hydroxyl radical, and thus
become potent oxidants. These ACT solu-
tions can initiate lipid peroxidation, oxidize
proteins such as the antiproteinase, a-l-pro-
tease inhibitor (88-90), and nick DNA
(82,87). The quinone-hydroquinone-semi-
quinone system can penetrate viable mam-
malian cells, bind to, and nick cellular DNA
(2,86,87,91,92). The nicks produced by the
tar radical require multistep repair, suggest-
ing a process that could be error prone (93).
These ACT solutions also interfere with
mitochondrial electron transport (94).

The ESR and DNA binding and nicking
behavior of the tar radical is very closely
modeled by the semiquinone system

g= 2.047

A
g= 2.0042

B

3320 33 33O 3380

Field, gauss

Figure 4. The electron spin resonance spectra of (A) a
solution of ACT (10 mg tar/ml) and (B) a solution of
catechol aged 1 week (33 mg/ml) (92).

present in aged solutions of catechol
(85,95,96). Figure 4 shows the similarity
in the ESR spectra obtained for solutions of
ACT and aged catechol (92). Thus, the tar
radical is a low-molecular-weight semi-
quinone radical, which exists in equilibrium
with its quinone and hydroquinone deriva-
tives. This radical system can bind to DNA,
produce superoxide, hydrogen peroxide,
and the hydroxyl radical in the vicinity of
the DNA, and nick DNA (2,78).

Figure 5 shows that the tar semiquinone
radical signal becomes associated with
DNA when ACT solutions are incubated
with calf thymus DNA (82). Since the
radical-producing system in ACT solutions
is a quinone-hydroquinone-semiquinone
system of low molecular weight, it can pass
through cell membranes, diffuse to the
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nucleus, and bind to DNA. Figure 6 shows
the ESR spectra obtained when the DNA
from rat alveolar macrophages that have
been incubated either with ACT or aged
catechol solutions are trapped and washed
on polycarbonate filters (82). These ACT
and aged catechol solu-tions bind to and
then nick DNA. A plot of the amount of

tar c
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and
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cat(
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a-1 8

.w_
cJC)a1)
0

10 gauss

Figure 5. The electron spin resonance spectra of mate-
rial remaining on polycarbonate filters after filtering
the material from the following incubations: (A) ACT
plus calf thymus DNA; (B) ACT solutions alone; (C)
DNA alone (82).

Figui
rat al

or of catechol used versus DNA nicks Deferoxamine provides little protection,
ws saturation behavior, suggesting that suggesting that the iron required to convert
re might be certain sites in the DNA hydrogen peroxide to the hydroxyl radical
are particularly prone to bind the tar is tightly associated either with the ACT

cal; once these sites are saturated, bind- radical or with DNA or both (82).
decreases (78,82,92). Analyses of these Glutathione also protects significantly, as
ding data using Lineweaver-Burke or shown in Figure 7.
ie-Hofstee plots, or by computer curve Figure 8 depicts the binding of the ACT
ng, give very similar binding constants (or catechol) radical to DNA, the reduction
indicate that 0.24 cigarettes produce an of oxygen by the semiquinone radical to
T solution with the DNA nicking produce superoxide, the dismutation of
mncy equivalent to a solution containing superoxide to give hydrogen peroxide, and
-pg/ml catechol (82). This amount of the reduction of hydrogen peroxide by iron
chol actually would be that contained ions (probably associated with DNA, the
.3 cigarette (82). radical, or both) to the hydroxyl radical.
Catalase, but not SOD, provides signif- Randerath and associates (97-106) and
it protection against ACT- and aged others (107,108) have used the phospho-
echol-induced DNA nicks (82). rous postlabeling method to demonstrate

that cigarette smoke and tar lead to the for-
mation of DNA adducts both in vitro and

00 1 in vivo. Radicals need not be involved in
80 Tthe binding of cigarette tar components,
60- y presumably PAH derivatives, to DNA.

40- / However, it is striking that glutathione
appears to protect DNA very similarly

20- ; against adduct formation, as observed by
o- Randerath and associates (97) and the

o 50 100 15C 200 DNA nicks that we observe (Figure 7) (82).
Glutathione, mM Recendy, we fractionated ACT solutions

into 120 fractions and compared the
re 7. Protection against ACT-induced DNA nicks in strength of the ESR signal of the tar radical
Iveolar macrophages provided by glutathione (82). in each fraction with the ability of these

3. 02'- dismutates to give
H202 (which can also diffuse
in from other cellular sites)

HlAM I 1 UctnIDUI B

RAM

ft/.ryC4A4\ C

Field, gauss
Figure 6. The electron spin resonance (ESR) spectra
of the material obtained when the DNA from rat alve-
olar macrophages (RAM) that have been incubated
either with (A) ACT or (B) aged catechol solutions and
then isolated on polycarbonate filters (92). No ESR
signal is obtained if the RAM are not exposed to ACT
or catechol (C).

DNA

Figure 8. Graphic representation showing 1) the binding of the ACT (or catechol) radical to DNA, 2) the reduction
of oxygen by the semiquinone radical to produce superoxide, 3) the dismutation of superoxide to give hydrogen
peroxide, and 4) the reduction of hydrogen peroxide by iron ions (probably associated with DNA, the radical, or
both) to the hydroxyl radical or a ferryl species that nicks DNA (78,82,92).
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Figure 9. Comparison of fractions of ACT solutions. (A) Signal strength of the electron spin resonance (ESR) signal
due to the tar radical; as can be seen, the radical primarily is contained in fractions that elute at 94 to 106 ml.
(B) Ability of these fractions to take up oxygen and reduce it to hydrogen peroxide. The activity is largely confined
to the same fractions. (C) Ability of these fractions to cause nicks in rat alveolar macrophage DNA, expressed as
the damage quotient number (Qd). The DNA nicking activity is mainly confined to those fractions that (A) contain
the tar radical and that (B) reduce 02 to superoxide. Data from Zang et al. (96).

fractions to take up and reduce oxygen to
hydrogen peroxide and to nick DNA. If the
cigarette tar radical is the species that
reduces oxygen, ultimately producing

hydrogen peroxide, and if this cigarette tar
radical system is responsible for nicking
DNA, then all three of these characteristics
of the ACT fractions should be proportional.

A B C
PAH Q DNA Q.+ DNA

PAH* DNA* Complex (Fe++)

DNA PAH | 02-/H202

Adduct Nicks

Figure 10. Possible ways for the cigarette tar radical,
Q, - to produce DNA damage. The tar radical could
complex with DNA, bind iron, and cause nicks, as
shown at the right side of the figure (C) and also in
more detail in Figure 8. In (A) the tar radical is pro-
posed to interact with a procarcinogen (such as a PAHI
to produce an activated PAH, PAH,* which can bind to
DNA; this activated species, PAH,* might for example
be a cation-radical or a phenoxyl radical of the PAH. In
(B), the tar radical is proposed to interact with DNA to
activate a base (DNA*) that can then bind a carcinogen.

Indeed, Figure 9 shows that this is the case.
This is the strongest evidence we have dis-
covered so far that it is the tar radical that is
responsible for binding to and nicking
DNA (96).

Figure 10 suggests possible ways for the
cigarette tar radical, Q-, to produce DNA
damage. Mechanisms A and B show adduct
formation and mechanism C shows DNA
nicking. In Figure IOA the tar radical is
proposed to interact with a procarcinogen
(such as a PAH) to produce an activated
PAH, PAH, which can bind to DNA. In
Figure lOB, the tar radical is proposed to
activate DNA to a form that can then bind
a carcinogen. The tar radical could interact
with DNA, as shown in Figure 8; this is
abbreviated as shown in Figure 10C. We
have not yet compared the ability of ACT
fractions to produce adducts, as demon-
strated by Randerath et al. (97-102), but
that clearly is the next step in our efforts to
demonstrate that the cigarette tar radical is
involved in the harmful effects of smoking.
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